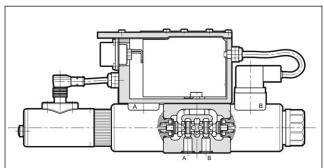


PROPORTIONAL DIRECTIONAL VALVE WITH FEEDBACK AND INTEGRATED ELECTRONICS


SUBPLATE MOUNTING ISO 4401-03

p max 350 barQ max 80 l/min

MOUNTING INTERFACE

OPERATING PRINCIPLE

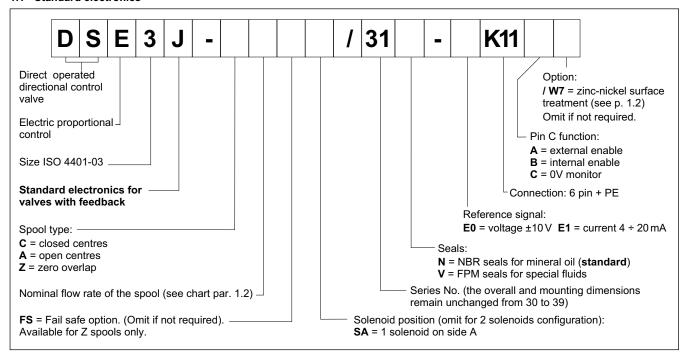
- The DSE3J* are proportional directional valves, direct operated, with closed loop position control. The mounting interface is in compliance with ISO 4401 standards.
- The valve opening and hence flow rate can be modulated continuously in proportion to the reference signal. Transducer and digital card allow a fine control of the spool position, reducing both hysteresis and response times and optimizing the valve performance.
- The valves are available with different types of electronics, with analogue or fieldbus interfaces.
 - The fail safe function is available for spools type Z.
 - Valves are easy to install. The driver manages digital settings directly.

PERFORMANCES

(Mineral oil with viscosity of 36 cSt at 50° C and p = 140 bar)

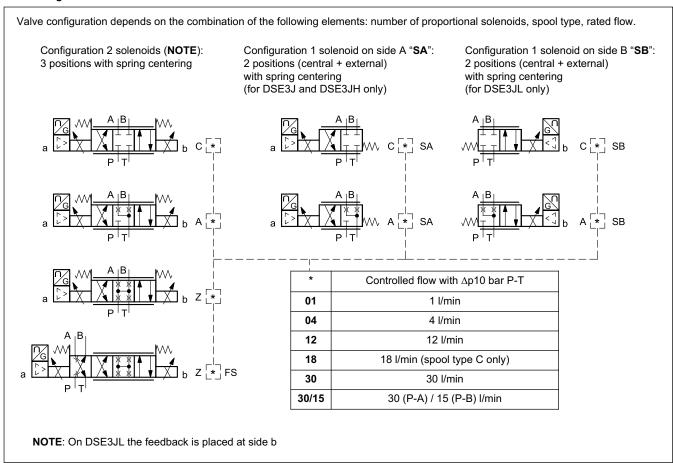
Max operating pressure: P - A - B ports T port	bar	350 210	
Nominal flow with ∆p 10 bar P-T	l/min	1 - 4 - 12 -18 - 30	
Response times	see	paragraph 7	
Hysteresis	% of Q max	< 0.2%	
Repeatability	% of Q max	< 0.2%	
Threshold		< 0.1%	
Valve reproducibility		≤ 5%	
Electrical characteristics	see paragraph 3		
Ambient temperature range	°C	-20 / +60	
Fluid temperature range	°C	-20 / +80	
Fluid viscosity range	cSt	10 ÷ 400	
Fluid contamination degree		to ISO 4406:1999 ss 18/16/13	
Recommended viscosity	cSt	25	
Mass: single solenoid valve double solenoid valve	kg	2.2 2.7	

HYDRAULIC SYMBOLS (typical)



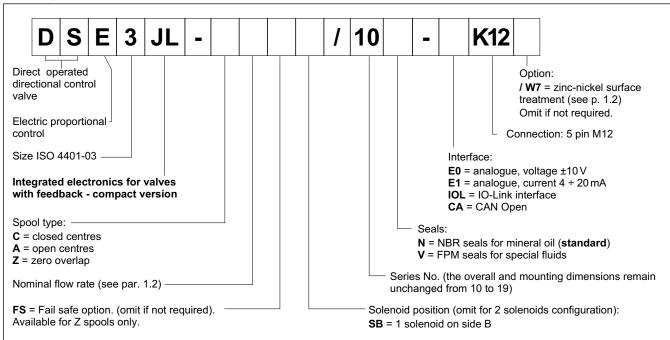
83 230/122 ED 1/16

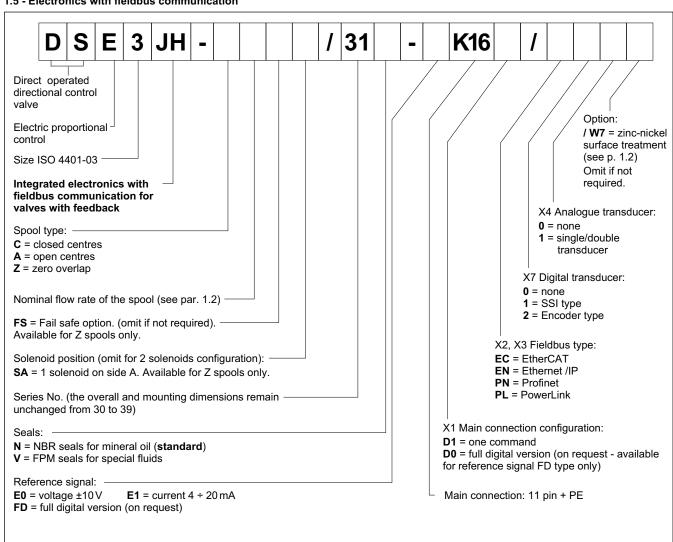
1 - IDENTIFICATION CODE


1.1 - Standard electronics

1.2 - Surface treatments

The standard valve is supplied with surface treatment of phosphating black. The zinc-nickel finishing on the valve body makes the valve suitable to ensure a salt spray resistance up to 240 hours. (test operated according to UNI EN ISO 9227 standards and test evaluation operated according to UNI EN ISO 10289 standards).


1.3 - Configurations


83 230/122 ED **2/16**

1.4 - Compact electronics

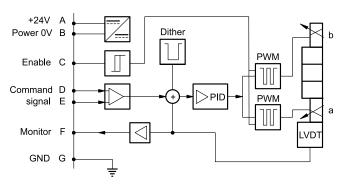
1.5 - Electronics with fieldbus communication

83 230/122 ED 3/16

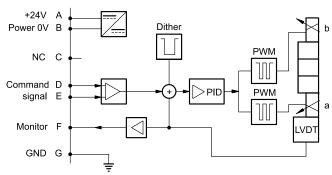
2 - ELECTRONICS COMMON DATA

Duty cycle		100% (continuous operation)
Protection class according to EN 60529		IP65 / IP67 (NOTE)
Supply voltage	V DC	24 (from 19 to 30 VDC), ripple max 3 Vpp
Power consumption	VA	25
Maximum solenoid current	Α	1.88
Fuse protection, external	Α	3
Managed breakdowns		Overload and electronics overheating, LVDT sensor error, cable breakdown, supply voltage failure
Electromagnetic compatibility (EMC) emissions EN 61000-6-4, immunity EN 61000-6-2		According to 2014/30/EU standards

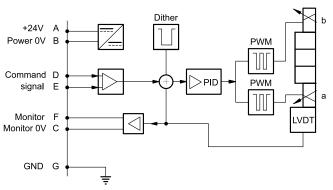
NOTE: The IP degree is guaranteed only with mating connector of equivalent IP degree, installed and tightened correctly. Moreover, on the JH versions it is necessary to protect any unused connections with caps.


3 - DSE3J - STANDARD ELECTRONICS

3.1 - Electrical characteristics

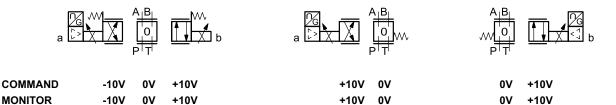

Command signal:	voltage (E0)	V DC	±10 (Impedance Ri = 11 kOhm)
	current (E1)	mA	4 ÷ 20 (Impedance Ri = 58 Ohm)
Monitor signal:	voltage (E0)	V DC	±10 (Impedance Ro > 1 kOhm)
	current (E1)	mA	4 ÷ 20 (Impedance Ro = 500 Ohm)
Communication for dia	gnostic		LIN-bus Interface (by means of the optional kit)
Connection			6 pin + PE (MIL-C-5015-G - DIN EN 175201-804)

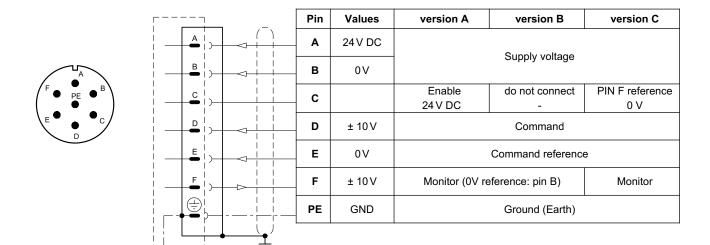
3.2 - On-board electronics diagrams


VERSION A - External Enable

VERSION B - Internal Enable

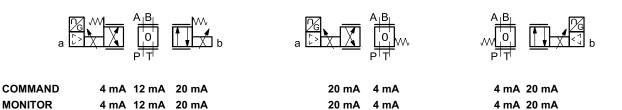
VERSION C - 0V Monitor

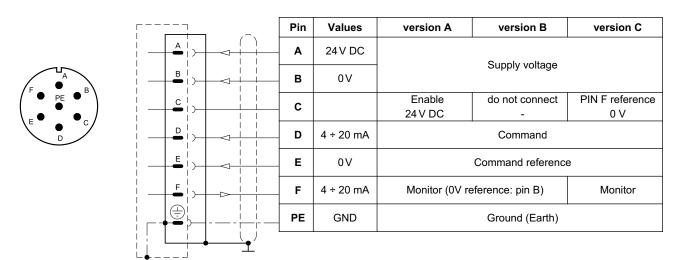



83 230/122 ED **4/16**

3.3 - Versions with voltage command (E0)

The reference signal is between -10V and +10V on double solenoid valve, and 0 ÷ 10V on single solenoid valve SA. The monitor feature of versions B and C becomes available with a delay of 0,5 sec from the power-on of the card.





3.4 - Versions with current command (E1)

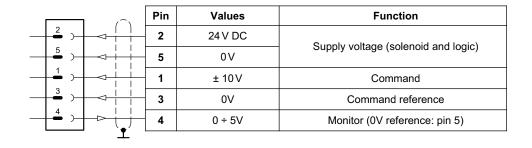
The reference signal is supplied in current 4 ÷ 20 mA. If the current for command is lower, the card shows a breakdown cable error. To reset the error is sufficient to restore the signal.

The monitor feature of versions B and C becomes available with a delay of 0,5 sec from the power-on of the card.

83 230/122 ED 5/16

4 - DSE3JL - COMPACT ELECTRONICS

In versions 'IOL' and 'CA' pin 3 and pin 5 are galvanic isolated up to 100 V to avoid earth loops. In IO-Link networks, the length of the connecting cable is limited to 20 metres.


4.1 - Electrical characteristics

Command signal:	voltage (E0) current (E1)	V DC mA	±10 (Impedance Ri = 11 kOhm) 4 ÷ 20 (Impedance Ri = 58 Ohm)
Monitor signal:	voltage (E0) current (E1)	V DC mA	0 ÷ 5 (Impedance Ro > 1 kOhm) 4 ÷ 20 (Impedance Ro = 500 Ohm)
IO-Link communication Data rate	ı (IOL):	kBaud	IO-Link Port Class B 230,4
Can Open communica Data rate	tion (CA):	kbit	10 ÷ 1000
Data register (IOL and	CA versions only)		solenoid voltage supply, solenoid faults (shortcircuit, bad config, internal), box temperature, switch-on time, vibrations
Connection			5-pin M12 code A (IEC 61076-2-101)

4.2 - Pin tables

'E0' connection

'E1' connection

.~.	Pin	Values	Function
2)	2	24 V DC	Supply voltage (coloneid and logic)
5	5	0 V	Supply voltage (solenoid and logic)
1)	1	4 ÷ 20 mA	Command
3)	3	0V	Command reference
4 > -	4	4 ÷ 20 mA	Monitor (0V reference: pin 5)
<u>*</u>			

'IOL' connection

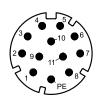
	Pin	Values	Function
2	2	2L+ 24 V DC	Supply of the power stage
5	5	2L- 0 V (GND)	Internal galvanic isolation from PIN 3
1)	1	1L+ +24 V DC	IO Link gunnly voltage
3) 4 1	3	1L- 0V (GND)	IO-Link supply voltage
4)	4	C/Q	IO-Link Communication
<u></u>			

'CA' connection

	Pin	Values	Function
1)	1	CAN_SH	Shield
2	2	24 V DC	Cumply voltage
3)	3	0 V (GND)	Supply voltage
4)	4	CAN H	Bus line (high)
5	5	CAN_L	Bus line (low)

83 230/122 ED 6/16

5 - DSE3JH - FIELDBUS ELECTRONICS


The 11+ PE pin connection allows separate supply voltage for electronics and solenoids.

Command - valve position schemes as for the standard electronics. Please refer to pictures in par. 3.3 and 3.4.

5.1 - Electrical characteristics

Command signal:	voltage (E0) current (E1) digital (FD)	V DC mA	±10 (Impedance Ri = 11 kOhm) 4 ÷ 20 (Impedance Ri = 58 Ohm) via fieldbus
Monitor signal:	voltage (E0) current (E1)	V DC mA	±10 (Impedance Ro > 1 kOhm) 4 ÷ 20 (Impedance Ro = 500 Ohm)
Communication / diagr	ostic		via Bus register
Communication interfa	ce standards		IEC 61158
Communication physic	al layer		fast ethernet, insulated 100 Base TX
Power connection			11 pin + PE (DIN 43651)

5.2 - X1 Main connection pin table

D1: one command

·¬	Pin	Values	Function
	_ 1	24 V DC	
2)	2	0 V	Main supply voltage
3	3	24V DC	Enable
4	4	± 10 V (E0) 4 ÷ 20 (E1)	Command
5	5	0 V	Command reference signal
6	6	± 10 V (E0) 4 ÷ 20 (E1)	Monitor (0V reference pin 10)
7	7	NC	do not connect
8	8	NC	do not connect
9	9	24 V DC	I and and and
10	10	0 V	Logic and control supply
	11	24 V DC	Fault (0V DC) or normal working (24V DC) (0V reference pin 2)
	12	GND	Ground (Earth)
- -			

D0: full digital

	Do: fall digital				
Pin	Values	Function			
1	24 V DC	Main augustus ditaga			
2	0 V	Main supply voltage			
3	24V DC	Enable			
4	NC	do not connect			
5	NC	do not connect			
6	NC	do not connect			
7	NC	do not connect			
8	NC	do not connect			
9	24 V DC	Logic and control cumply			
10	0 V	Logic and control supply			
11	24 V DC	Fault (0V DC) or normal working (24V DC) (0V ref. pin 2)			
12	GND	Ground (Earth)			
12	GND	Ground (Earth)			

5.3 - FIELDBUS connections

Please wire following guidelines provided by the related standards communication protocol. Any connections present and not used must be protected with special caps so as not to nullify the protection against atmospheric agents.

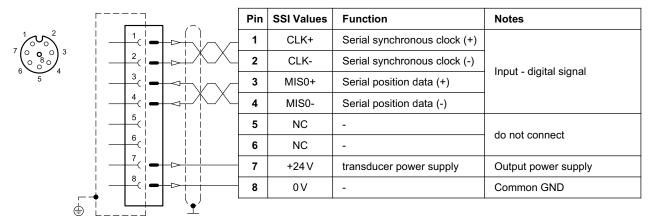
X2 (IN) connection M12 D 4 pin female

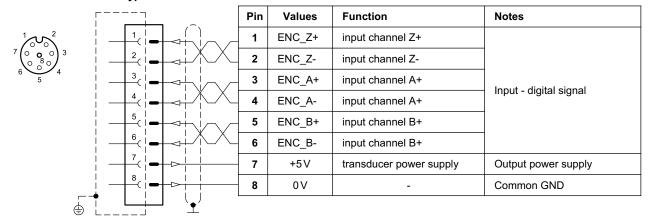
Pin	Values	Function
1	TX+	Transmitter
2	RX+	Receiver
3	TX-	Transmitter
4	RX-	Receiver
HOUSING	shield	

X3 (OUT) connection: M12 D 4 pin female

Pin	Values	Function
1	TX+	Transmitter
2	RX+	Receiver
3	TX-	Transmitter
4	RX-	Receiver
HOUSING	shield	

NOTE: Shield connection on connector housing is recommended.


83 230/122 ED **7/16**


5.4 - Digital transducer connection

X7 connection: M12 A 8 pin female

VERSION 1: SSI type

VERSION 2: ENCODER type

5.5 - Analogue transducer connection

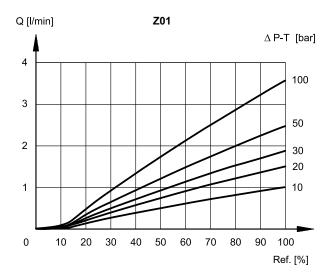
X4 connection: M12 A 4 pin female

VERSION 1: single / double transducer

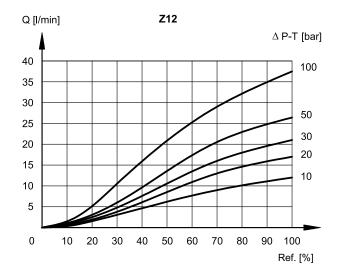
(single or double is a software-selectable option)

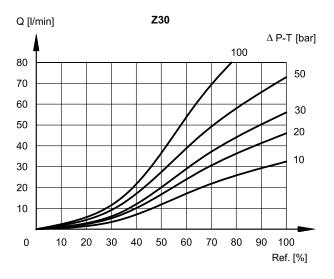
	[]	Pin	Values	Notes
∼		1	+24 V	Remote transducer power supply (out) 100 mA
$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 4 & 3 & 0 \end{pmatrix}$	2	2	±10 V 4 ÷20 mA	Input signal of transducer 1 (range software selectable)
	3	3	0 V	Common reference signal for transducer power and signals
	4	4	±10 V 4 ÷20 mA	Input signal of transducer 2 (range software selectable)
		5	-	

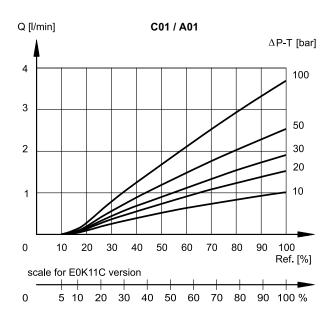
83 230/122 ED **8/16**

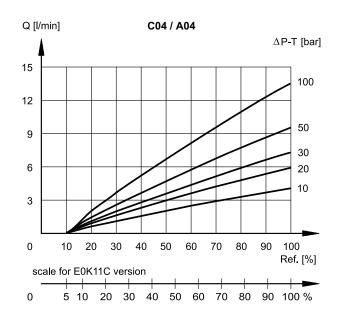

6 - CHARACTERISTIC CURVES

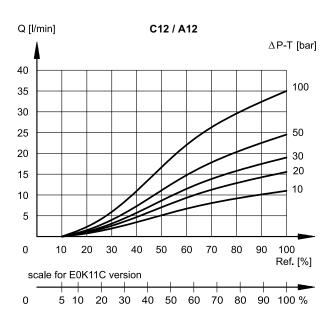
(obtained with mineral oil with viscosity of 36 cSt at 50°C and with digital integrated electronics)

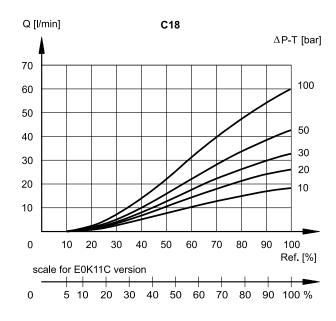

Typical flow rate curves related to the reference signal and measured for the available spools. The Δp values are measured between P and T valve ports.

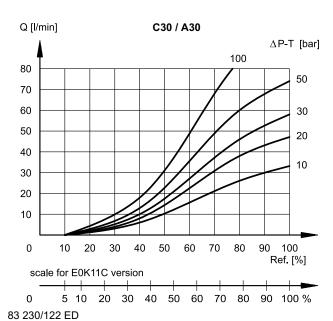


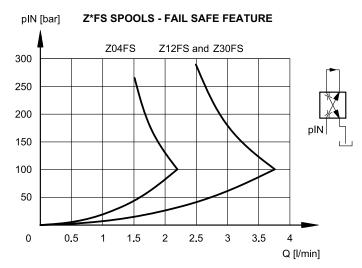


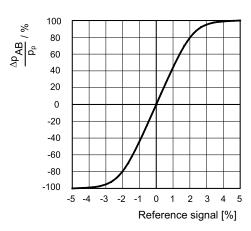





83 230/122 ED 9/16





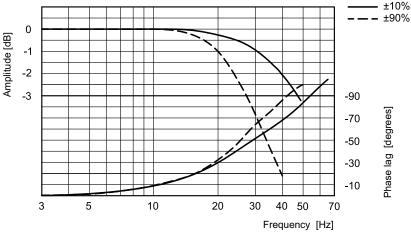


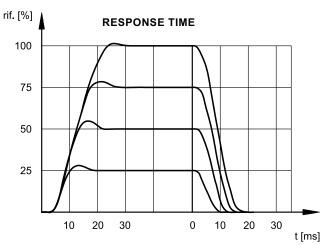
Flow P \to B / A \to T with valve in fail safe position, depending on the inlet pressure.

When a power failure (enabling OFF) occurs, the valve moves in 'fail safe' position, maintaining a minimum flow that allows the actuator to return slowly to a safe position.

During the black-out the centering springs retain the spool in fail safe-position.

Z SPOOLS - PRESSURE GAIN


The diagram shows the valve pressure gain, expressed as % of the ratio between the port pressure variation in A or B (Δp AB) and the P system pressure, according to the reference signal.

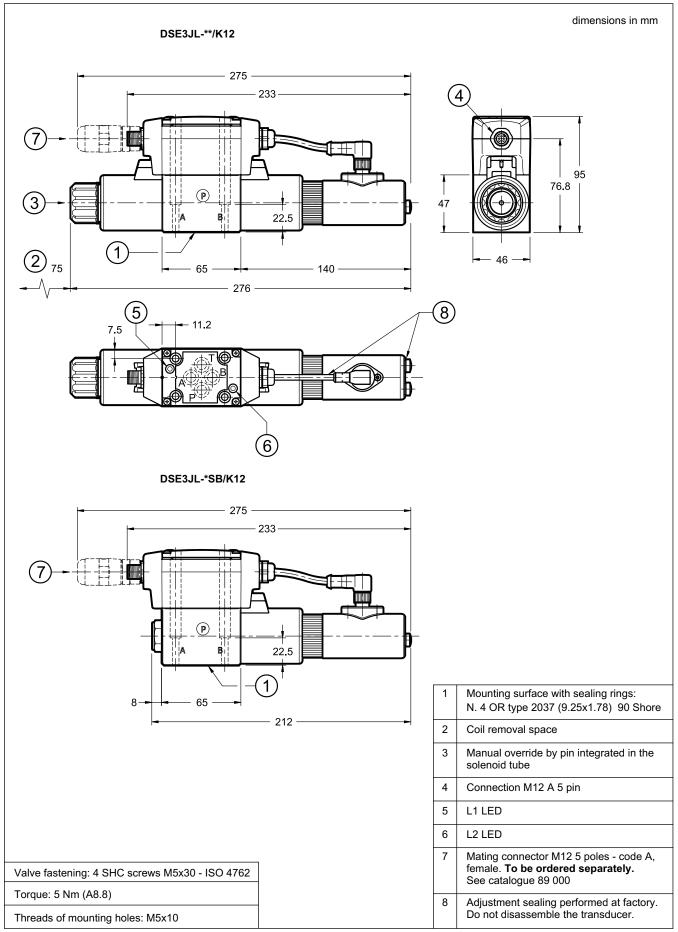

In practice, the pressure gain states the valve reaction towards external disturbances aimed at changing the actuator position.

7 - RESPONSE TIMES

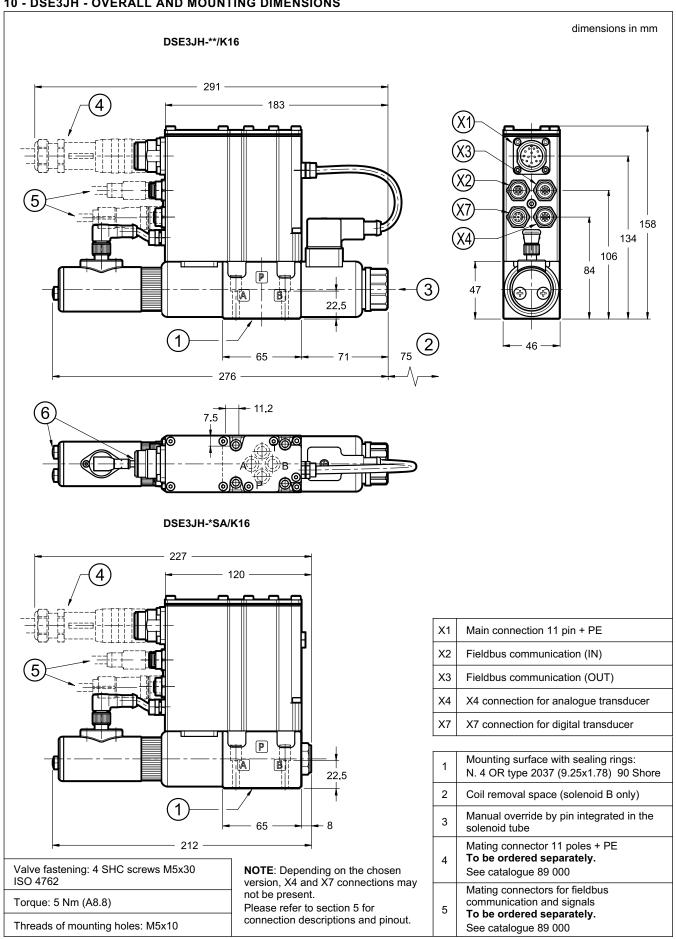
(obtained with mineral oil with viscosity of 36 cSt at 50°C and 140 bar $\Delta p \ P \rightarrow T$)

FREQUENCY RESPONSE (Z SPOOLS)

83 230/122 ED 11/16


8 - DSE3J - OVERALL AND MOUNTING DIMENSIONS

83 230/122 ED 12/16


9 - DSE3JL - OVERALL AND MOUNTING DIMENSIONS

83 230/122 ED 13/16

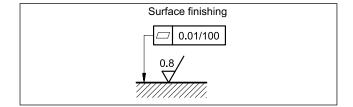
10 - DSE3JH - OVERALL AND MOUNTING DIMENSIONS

83 230/122 ED 14/16

11 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics.


The fluid must be preserved in its physical and chemical characteristics.

12 - INSTALLATION

DSE3J valves can be installed in any position without impairing correct operation.

Ensure that there is no air in the hydraulic circuit.

Valves are fixed by means of screws or tie rods on a flat surface with planarity and roughness equal to or better than those indicated in the relative symbols. If minimum values are not observed, fluid can easily leak between the valve and support surface.

13 - ACCESSORIES

(to be ordered separately)

13.1 - Mating connectors

Mating connectors must be ordered separately. See catalogue 89 000.

For K11 and K16 versions we recommend the choice of a metal connector to avoid electromagnetic disturbances and to comply with EMC regulations on electromagnetic compatibility. If you opt for a plastic connector, make sure that it guarantees and maintains the IP and EMC protection characteristics of the valve.

13.2 - Mating connectors and caps for fieldbus communication and for sensors.

Duplomatic offers spare parts to be wired and also ready-to-use cord sets. Please refer to cat. 89 000.

13.3 - Connection cable

The optimal wiring provides for 7 isolated conductors, with separate screen for the signal wires (command, monitor) and an overall screen.

Cross section for power supply:

- up to 20 m cable length: 1,0 mm²
- up to 40 m cable length: 1,5 mm2 (IO-Link excluded)

Cross section for signals (command, monitor):

- 0,50 mm²

13.4 - Kit for start-up LINPC-USB

Device for service start-up and diagnostic. See catalogue 89 850.

14 - SUBPLATES

(see catalogue 51 000)

PMMD-Al3G rear ports

PMMD-AL3G side ports

Ports dimensions: P, T, A, B: 3/8" BSP

83 230/122 ED 15/16

DUPLOMATIC MS S.p.A.

via M. Re Depaolini 24 • 20015 PARABIAGO (MI) • ITALY tel. +39 0331.895.111 • www.duplomatic.com • e-mail: sales.exp@duplomatic.com

16/16